Nonexpansive Nonlinear Operators in a Banach Space.

نویسنده

  • F E Browder
چکیده

I Berger, M., "Sur quelques varigtes riemanniennes compactes d'Einstein," Compt. Rend., 260, 1554-1557 (1965). 2 Bishop, R. L., and R. J. Crittenden, Geometry of Manifolds (New York: Academic Press, 1964). 3Bishop, R. L., and S. I. Goldberg, "On the topology of positively curved Kaehler manifolds," T6hoku Math. J., 15, 359-364 (1963). 4 Bishop, R. L., and S. I. Goldberg, "On the second cohomology group of a Kaehler manifold of positive curvature," Proc. Am. Math. Soc., 16, 119-122 (1965). 'Bishop, R. L., and S. I. Goldberg, "Some implications of the generalized Gauss-Bonnet theorem," Trans. Am. Math. Soc., 112, 508-535 (1964).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and convergence theorems of pointwise asymptotically nonexpansive random operator in Banach space

In this paper, we prove the existence of a random fixed point of by using pointwise asymptotically nonexpansive random operator and the stability resultsof two iterative schemes for random operator.

متن کامل

On fixed points of fundamentally nonexpansive mappings in Banach spaces

We first obtain some properties of a fundamentally nonexpansive self-mapping on a nonempty subset of a Banach space and next show that if the Banach space is having the Opial condition, then the fixed points set of such a mapping with the convex range is nonempty. In particular, we establish that if the Banach space is uniformly convex, and the range of such a mapping is bounded, closed and con...

متن کامل

A composite iterative algorithm for accretive and nonexpansive operators

In this paper, we propose a one-step composite iterative algorithm for solving operator equations involving accretive and nonexpansive operators. We obtain a weak convergence theorem for these nonlinear operators in the framework of 2-uniformly smooth and uniformly convex Banach space. c ©2017 All rights reserved.

متن کامل

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 1965